Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module

نویسندگان

  • Myung Ki Sung
  • Issam Mudawar
چکیده

This study examines the single-phase and two-phase cooling performance of a hybrid micro-channel/micro-jet impingement cooling scheme using HFE 7100 as working fluid. This scheme consists of supplying coolant from a series of jets that deposit liquid into the micro-channels. A single-phase numerical scheme that utilizes the k–e turbulent model and a method for determining the extent of the laminarized wall layer shows very good predictions of measured wall temperatures. It is shown jet velocity has a profound influence on single-phase cooling performance. High jet velocities enable jet fluid to penetrate the axial micro-channel flow and produce a strong impingement effect at the wall. On the other hand, the influence of jets at low jet velocities is greatly compromised compared to the microchannel flow. During nucleate boiling, vapor layer development along the micro-channel in the hybrid module is fundamentally different from that encountered in conventional micro-channels. Here, subcooled jet fluid produces repeated regions of bubble growth followed by bubble collapse, rather than the continuous growth common to conventional micro-channel flow. By reducing void fraction along the micro-channel, the hybrid scheme contributes greater wall temperature uniformity. Increasing subcooling and/or flow rate delay the onset of boiling to higher heat fluxes and higher wall temperatures, and also increase critical heat flux considerably. A nucleate boiling heat transfer coefficient correlation is developed that fits the present data with a mean absolute error of 6.10%. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme

This study explores the single-phase cooling performance of a hybrid cooling module in which a series of micro-jets deposit coolant into each channel of a micro-channel heat sink. This creates symmetrical flow in each micro-channel, and the coolant is expelled through both ends of the micro-channel. Three micro-jet patterns are examined, decreasing-jet-size (relative to center of channel), equa...

متن کامل

Single-phase hybrid micro-channel/micro-jet impingement cooling

A new hybrid cooling scheme is proposed for high-flux thermal management of electronic and power devices. This scheme combines the cooling benefits of micro-channel flow and micro-jet impingement with those of indirect refrigeration cooling. Experiments were performed to assess single-phase cooling performance using HFE 7100 as working fluid. Excellent predictions were achieved using the standa...

متن کامل

Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module

This paper explores the single-phase and two-phase cooling performance of a hybrid micro-channel/slot-jet module using HFE-7100 as working fluid. Three-dimensional numerical simulation using the k–e turbulent model is used to both assess the single-phase performance and seek a geometry that enhances heat removal capability and surface temperature uniformity while decreasing mean surface tempera...

متن کامل

CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement

This paper explores the subcooled nucleate boiling and critical heat flux (CHF) characteristics of a hybrid cooling module that combines the cooling attributes of micro-channel flow and jet impingement. A test module was constructed and tested using HFE-7100 as working fluid. Increasing the coolant’s flow rate and/or subcooling shifted both the onset of boiling (ONB) and CHF to higher heat flux...

متن کامل

Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme

Experiments were performed to investigate the two-phase cooling characteristics of a new hybrid cooling scheme combining the cooling attributes of slot jets and micro-channel flow. A test module was constructed in which dielectric PF-5052 liquid was introduced through five 0.48 mm wide and 12.7 mm long slot jets, each leading to a 1.59 mm wide and 1.02 mm deep channel. Increases in flow rate an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008